GUIDELINE FOR IDENTIFICATION OF PEPPER BACTERIAL LEAF SPOT RACES USING DIFFERENTIAL HOSTS

(Version 4.0, last updated: July 2019)

Authors: Chet Kurowski, Kevin Conn, Phyllis Himmel
Updated Nov 2015: Elisabetta Vivoda
Updated July 2019: Phyllis Himmel
Host: Capsicum annuum L.
Pathogen: Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri.

Background: Bacterial leaf spot symptoms include small, irregular, water-soaked, greasy-appearing lesions on leaf undersurfaces. Lesions develop rapidly in size, and become tan to reddish-brown. Often lesions are more numerous at leaf tips and margins where moisture accumulates. Symptoms are usually more severe and lesions reach a greater size following periods of prolonged leaf wetness. Defoliation occurs under heavy disease pressure. When conditions are dry, leaves become tattered as lesion centers and leaf margins dry and disintegrate. Stem lesions occur as narrow, light-brown, longitudinally raised cankers. Fruit spots begin as water-soaked areas that later become necrotic. These spots are rough in appearance and crack as they develop.

Until the early 1990’s, bacterial leaf spot of pepper and tomato was thought to be caused by a single bacterial species, Xanthomonas campestris pv. vesicatoria. In the early 1990’s, two distinct genetic groups were shown to exist within races of X. campestris pv. vesicatoria. In 1995, Vauterin et al. restructured the species within the genus Xanthomonas and proposed X. vesicatoria and X. axonopodis pv. vesicatoria. Subsequently, four taxonomically distinct xanthomonads were identified and placed into four groups, designated A, B, C, and D. Jones et al. showed these four groups to be distinct enough to deserve species status: X. euvesicatoria = X. campestris (axonopodis) pv. vesicatoria (group A), X. vesicatoria = X. vesicatoria (group B), X. perforans (group C), and X. gardneri (group D).

Pepper races found within X. euvesicatoria are the most widely distributed and cause the greatest economic loss in pepper. Xanthomonas vesicatoria and X. gardneri are also known to cause bacterial leaf spot on pepper and can have a significant impact in regions where they are found. Xanthomonas perforans races are occasionally found to cause disease on pepper. Pepper races found within X. euvesicatoria are the most widely distributed and cause the greatest economic loss in pepper. Xanthomonas vesicatoria and X. gardneri are also known to cause bacterial leaf spot on pepper and can have a significant impact in regions where they are found. Xanthomonas perforans races are occasionally found to cause disease on pepper.

Races from all four species have been isolated from tomato. As resistance in tomato and pepper to bacterial spot is based on races that go across these species, use of the old and traditional name X. c. vesicatoria and its acronym Xcv continues.

Early work on bacterial leaf spot indicated that races recovered from tomato and pepper were pathogenic on both plant species, and for many years it was thought that cross infection could occur in the field. It was not until the 1970’s that Cook (3) demonstrated host specificity was associated with a hypersensitive reaction (HR) (1, 2, 3). Currently, three groups of races are distinguished on the basis of virulence on tomato and pepper: tomato races are virulent on tomato only, pepper races are virulent on pepper only, and pepper-tomato races are virulent on both crops (11). Within the pepper and pepper-tomato groups, races of the pathogen can be distinguished by the reaction of various pepper lines each containing a resistance gene.

Development of resistance to bacterial leaf spot of pepper began when Sowell (14, 15) screened many plant introductions for resistance. Currently, five resistance genes, which induce a hypersensitive response, have been identified within pepper (1, 2, 3, 10, and 11). These genes
were identified from the following plant introductions: PI 163192 (Bs1 gene); PI 260435 (Bs2 gene); PI 271322 (Bs3 gene); PI 235047 (Bs4 gene); Capsicum baccatum var. pendulum 1556 (Bs7). A hypersensitive response is observed as a confluent necrosis when leaves are infiltrated with a concentrated bacterial suspension. Growth of the bacterial population is arrested during the development of a hypersensitive response and disease symptoms are not observed (6, 17). The hypersensitive response is controlled according to the gene-for-gene model of resistance in that resistance is controlled by an avirulence gene in the pathogen and a resistance gene in the host (4, 5, 9).

A non hypersensitive response was identified in the breeding line Pep 13 and the accession PI 271322 and is controlled by bs5 and bs6, two recessive genes with additive action. Resistance is observed as yellowing and necrosis of the infiltrated area of the leaf. Growth of the bacteria is reduced during the development of the lesions and no symptoms are observed in resistant plants (10).

As sources of bacterial leaf spot resistance have been identified, back-crossing these sources into the commercial, bacterial leaf spot-susceptible cultivar Early Cal Wonder was carried out for Bs1, Bs2 and Bs3, bs5, bs6 and Bs7. Near isogenic lines were developed from Early Cal Wonder which became known as ECW10R, ECW20R, ECW30R, ECW12346R and ECW70R. These differential lines were used to identify races 0 to 5 of the pathogen. Bs4, which confers resistance to race 6, was identified in PI 235047. Identification of Bs4 also allowed for differentiation of four additional races, 7 to 10.

The Bs7 resistance gene allows the identification of recently described races of X. gardneri with AvrBs7 gene and X. euvesicatoria with the AvrBs1.1 gene (10). The host differential table was developed to identify pepper races based on reactions on the ECW near isogenic lines, and PI 235047 (Table 1).

Guidelines for differentiating races using the pepper differential lines:
Race identification based on the hypersensitive response: Grow the pepper differential lines identified in Table 1 for 3 to 4 weeks in a greenhouse or growth chamber until the fourth true leaf is fully expanded. Make a 1 to 2 x 10^8 cfu/ml suspension of the appropriate bacterial strain(s) and pressure infiltrate each on the abaxial leaf surface near the midrib. A water-soaked area of leaf tissue 1 to 2 cm in diameter is sufficient. Evaluate reactions 48 to 72 hours after inoculation, depending on environmental conditions. Hypersensitive reactions are indicated by a rapid, necrotic collapse of the infiltrated area and generally are observed before susceptible reactions. Reactions on PI 235047 generally take longer to develop than on the other differentials.

Figure 1. Age or size of seedlings at inoculation
Figure 2. Infiltration of a leaf is accomplished by gently forcing the bacterial suspension into the underside of the leaf using a sterile syringe without a needle.
Figure 3. Resistant reactions can vary in appearance from bleached white with a dark border to uniformly dark brown throughout the infiltrated, collapsed area.

Figure 4. Susceptible reactions manifest 3-5 days after infiltration as chlorotic, water soaked tissue in the infiltrated area.

Race identification based on resistance to the recessive genes bs5 and bs6:
Grow the pepper differential lines listed in table 1 for 3 to 4 weeks in a greenhouse or growth chamber until the fourth true leaf is fully expanded. Make a 1 to 2 \(\times \) \(10^5 \) cfu/ml suspension of the appropriate bacterial race(s) and pressure infiltrate each on the abaxial leaf surface near the midrib. A water-soaked area of leaf tissue 1 to 2 cm in diameter is sufficient. Incubate for 3 weeks in greenhouse conditions before evaluation. Evaluate reactions 3 weeks after inoculation, depending on environmental conditions, according to the following reading scale:
1 = no disease symptoms (figure 5)
2 = slight to moderate yellowing and slight necrosis (figure 6)
3 = extensive yellowing and moderate necrosis (figure 7)
4 = complete necrosis (figure 8)
Figure 5 Severity 1 No disease symptoms

Figure 6 Severity 2 = slight to moderate yellowing and slight necrosis

Figure 7 Severity 3 = extensive yellowing and moderate necrosis
Figure 8. Severity 4 = complete necrosis

Table 1. Differentiation of bacterial spot races using known resistance genes in pepper

<table>
<thead>
<tr>
<th>Race</th>
<th>Functional avirulence gene</th>
<th>ECW No R gene</th>
<th>ECW 10R BS<sub>1</sub> gene</th>
<th>ECW 20R BS<sub>2</sub> gene</th>
<th>ECW 30R BS<sub>3</sub> gene</th>
<th>PI 235047 BS<sub>4</sub> gene</th>
<th>ECW 12346R Bs1, Bs2, Bs3, bs5,bs6 genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xcv: 0</td>
<td>avrBS<sub>1</sub>, avrBS<sub>2</sub>, avrBS<sub>3</sub></td>
<td>S</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 1</td>
<td>avrBS<sub>2</sub>, avrBS<sub>3</sub></td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 2</td>
<td>avrBS<sub>1</sub>, avrBS<sub>2</sub></td>
<td>S</td>
<td>HR</td>
<td>HR</td>
<td>S</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 3</td>
<td>avrBS<sub>2</sub>, avrBS<sub>4</sub></td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>S</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 4</td>
<td>avrBS<sub>2</sub>, avrBS<sub>4</sub></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 5</td>
<td>avrBS<sub>1</sub></td>
<td>S</td>
<td>HR</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 6</td>
<td>avrBS<sub>4</sub></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 7</td>
<td>avrBS<sub>2</sub>, avrBS<sub>3</sub></td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>S</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 8</td>
<td>avrBS<sub>2</sub></td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>S</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 9</td>
<td>avrBS<sub>3</sub></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>HR</td>
<td>S</td>
<td>HR</td>
</tr>
<tr>
<td>Xcv: 10</td>
<td>unknown</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>HR*</td>
</tr>
</tbody>
</table>

ECW = Early Cal Wonder
ECW 10R, ECW 20R, ECW 30R and ECW 12346R are near isogenic. ECW 10R, ECW 20R and ECW 30R differ by the presence of the BS₁, BS₂ and BS₃ genes, respectively.

S = Susceptible reaction
HR = High resistance with hypersensitive response
HR* = High resistance without a hypersensitive response

PI 234057 (*Capsicum pubescens*): BS₄ gene confers hypersensitive resistance to Xcv: 6 and differentiates Xcv: 1 from Xcv: 7, Xcv: 3 from Xcv: 8, Xcv: 4 from Xcv: 9, and Xcv: 6 from Xcv: 10.
Ordering races of bacterial spot races
Reference races of races of the bacterial spot pathogen can be obtained for a service fee by contacting

Dr. David F. Ritchie
Professor
North Carolina State University
Plant Pathology Dept, Thomas Hall
100 Derieux Place, Campus Box 7616
Raleigh, NC 27695-7616 USA

Phone: (919) 515-6809
Fax: (919) 515-7716
E-mail: david_ritchie@ncsu.edu

Feedback
Inquiries on how to participate and support CPPSI, provide feedback on new races identified, views on the inoculation protocols, differential hosts, or any related matter is welcomed. Please contact: Dr. Phyllis Himmel at pthimmel@ucdavis.edu

Liability waiver
The Collaboration for Plant Pathogen Strain Identification, USDA NPGS/GRIN, APS, ASTA, and all other associated members and participating organizations or companies have done their best to provide information that is up-to-date and published in refereed journals and, therefore, no liability for the use of this information is accepted. The inoculation protocol described in this document has been demonstrated to be effective at identifying races of the pepper bacterial spot pathogen and resistance traits of pepper cultivars.

References

